Development of Long-Term Dendritic Spine Stability in Diverse Regions of Cerebral Cortex

نویسندگان

  • Yi Zuo
  • Aerie Lin
  • Paul Chang
  • Wen-Biao Gan
چکیده

Synapse formation and elimination occur throughout life, but the magnitude of such changes at distinct developmental stages remains unclear. Using transgenic mice overexpressing yellow fluorescent protein and transcranial two-photon microscopy, we repeatedly imaged dendritic spines on the apical dendrites of layer 5 pyramidal neurons. In young adolescent mice (1-month-old), 13%-20% of spines were eliminated and 5%-8% formed over 2 weeks in barrel, motor, and frontal cortices, indicating a cortical-wide spine loss during this developmental period. As animals mature, there is also a substantial loss of dendritic filopodia involved in spinogenesis. In adult mice (4-6 months old), 3%-5% of spines were eliminated and formed over 2 weeks in various cortical regions. Over 18 months, only 26% of spines were eliminated and 19% formed in adult barrel cortex. Thus, after a concurrent loss of spines and spine precursors in diverse regions of young adolescent cortex, spines become stable and a majority of them can last throughout life.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antipsychotic treatment induces alterations in dendrite- and spine-associated proteins in dopamine-rich areas of the primate cerebral cortex.

BACKGROUND Mounting evidence indicates that long-term treatment with antipsychotic medications can alter the morphology and connectivity of cellular processes in the cerebral cortex. The cytoskeleton plays an essential role in the maintenance of cellular morphology and is subject to regulation by intracellular pathways associated with neurotransmitter receptors targeted by antipsychotic drugs. ...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Deficiency of Cks1 Leads to Learning and Long-Term Memory Defects and p27 Dependent Formation of Neuronal Cofilin Aggregates.

In mitotic cells, the cyclin-dependent kinase (CDK) subunit protein CKS1 regulates S phase entry by mediating degradation of the CDK inhibitor p27. Although mature neurons lack mitotic CDKs, we found that CKS1 was actively expressed in post-mitotic neurons of the adult hippocampus. Interestingly, Cks1 knockout (Cks1-/-) mice exhibited poor long-term memory, and diminished maintenance of long-te...

متن کامل

Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study.

The present study explored differences in dendritic/spine extent across several human cortical regions. Specifically, the basilar dendrites/spines of supragranular pyramidal cells were examined in eight Brodmann's areas (BA) arranged according to Benson's (1993, Behav Neurol 6:75-81) functional hierarchy: primary cortex (somatosensory, BA3-1-2; motor, BA4), unimodal cortex (Wernicke's area, BA2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2005